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Spin-up in a rectangular container with a free surface is investigated numerically and
experimentally. In the formulation of two-dimensional numerical computation, we use
a potential-like function in addition to the stream function to deal with the first-order
Ekman pumping model. It is shown that our numerical results are in good agreement
with those obtained by the experiment when either the leading-order or first-order
pumping model is used. On the other hand, when no pumping effect is considered the
numerical results show, except in the initial development, a considerable discrepancy
from those of the experiment. Our attention in this study is focused on clarifying the
physical mechanism of cyclonic vortex merging. At low Reynolds numbers and/or
liquid depths the Ekman pumping damps the vortical flows fast, resulting in non-
merging. At moderate Reynolds numbers, it enhances merging because the cyclonic
vortices expand due to the Ekman pumping. We discuss the influence of various
parameters, including Reynolds number, Rossby number, and dimensionless liquid
depth, on the evolution of the vortical flows.

1. Introduction
Spin-up flow has applications in a broad range of areas such as turbomachinery, the

motion of liquid fuel within space craft, oceanic flow, and mantle movement inside the
Earth. Up to about 1990, most of the studies on the subject concerned axisymmetric
containers. In this configuration spin-up flow is dominated by the secondary motion
(called Ekman circulation) caused by Ekman pumping and defined on the meridional
plane. From about 1990 however non-axisymmetric configurations have attracted fluid
dynamicists’ attention, and it has been shown that the Ekman circulation is preceded
by two-dimensional separation from the lateral wall surfaces and the subsequent
development of interesting vortical flows. Once several vortices are established inside
the container they interact not only with each other but also with the sidewalls. Thus,
aside from its intrinsic importance, the spin-up in non-axisymmetric containers can
give further insight into various geophysical flow phenomena.

Van Heijst (1989) presented experimental evidence of two-dimensional separation
and the subsequent evolution of vortical flows leading to a self-organized cell structure
inside non-axisymmetric cylinders of various shapes built by combining circular
cylinders and flat plates.

Spin-up in rectangular containers was first studied experimentally by van Heijst,
Davies & Davis (1990) at Reynolds number O(105). This geometry, albeit simple,
turned out to provide rich phenomena. They discerned three main stages in the
spin-up process: (i) the starting flow, characterized by a uniform relative vorticity, (ii)
flow separation from the lateral walls, and (iii) subsequent organization of vortical
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flows into a regular array. Merging of a pair of cyclonic vortices originating from
separate corners occurs in the third stage, and van Heijst et al. (1990) attributed
this phenomenon to the free-surface deformation. (But later this argument had to be
supplemented by the lateral wall effect, i.e. image vortex, van de Konijnenberg & van
Heijst 1997.) They also observed a critical situation at which, depending on a small
unknown disturbance, the central dumbbell-shape vortex (anticyclonic) either split
into two, leading to the cyclones merging, or reorganized into a regular cell resulting
in non-merging. Suh (1994) has numerically shown that purely two-dimensional
Navier–Stokes equations can predict well the early development of the spin-up flow,
and he has also reproduced the critical phenomena by modulating an artificial initial
condition composed of a cyclonic–anticyclonic–cyclonic cell arrangement. However,
in most of his numerical results for the actual spin-up flow, the merging did not take
place.

Henderson, Lopez & Stewart (1996) studied the same flow problem using both ex-
perimental and numerical methods. They stressed that there exists a critical Reynolds
number below which no merging is expected, as was the case found by Suh (1994).
They also asserted that Ekman pumping is not required for the vortex merging,
as evidenced by their two-dimensional numerical computation without a pumping
model. However the numerical merging begins at a time 2.5 times later than ob-
served in the experiment. Further experimental study by the van Heijst group (van de
Konijnenberg & van Heijst 1997) on the rectangular tank has focused on the effect
of the free-surface deformation on, in particular, the merging phenomena. Here, it is
concluded that the free-surface deformation is a discouraging factor for the merging,
contrary to their early conjecture (van Heijst et al. 1990).

Common conclusions obtained by these investigations can be summarized as fol-
lows. (i) Although turbulence may exist at the very initial point of the spin-up process,
it soon decays, and the following early stage including the separation from lateral
walls and cyclonic vortex formation is essentially a two-dimensional phenomenon. (ii)
Merging of cyclones does not occur at low Reynolds numbers, say O(103). At higher
Reynolds numbers, O(104), merging is expected more often than not. (iii) There exists
a critical horizontal aspect ratio of the tank beyond which no merging is observed,
and it depends on other parameters, such as Reynolds number. (iv) The effect of liquid
depth is not monotonical. For instance, Henderson et al. (1996) observed that when
the liquid depth is increased the critical Reynolds number on the whole decreases at
first and then increases sharply. (v) At much higher Reynolds number, say O(105),
the cellular pattern tends to be asymmetric, and vortex evolution becomes far more
complex.

However some fundamental questions are not answered yet. (i) What is the basic
mechanism of the vortex merging? (ii) What is the role of Ekman pumping? (iii) To
what extent will the free-surface deformation influence the merging?

In this study we focus on the role of the Ekman pumping in the spin-up of
rectangular containers, and we aim to answer some of the above questions, specifically
(i) and (ii). For this purpose, we use both numerical and experimental methods. Up
to now, no successful comparison has been reported between the two results, except
for low Reynolds numbers and at the very beginning of the spin-up process. Further,
three-dimensional computation still demands a high cost. Thus, we develop a two-
dimensional numerical model which encompasses not only the leading-order but also
the first-order Ekman model. Zavala Sansón & van Heijst (2000) have already applied
the leading-order model to their two-dimensional computation for the axisymmetric
problems, showing that significant improvement can be established by taking the
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Figure 1. Schematic view of a homogeneous fluid contained in a rectangular tank,
and dimensionless coordinates.

Ekman model into consideration. However no results have been reported for the
non-axisymmetric cases in which a variety of interesting flow phenomena such as
two-dimensional boundary-layer separation and vortex merging/splitting occur.

This paper is organized as follows. In the following section, a two-dimensional
numerical model is derived which includes the Ekman pumping laws. The numerical
method is also explained in this section. In § 3, the experimental apparatus and the
PIV method are briefly described. We present and discuss the results in § 4, which is
followed by a summary and conclusions in § 5.

2. Formulation and numerical method
We consider a fluid of viscosity ν and density ρ contained in a rectangular tank of

length L and width B in a depth H with a free surface (refer to figure 1 which shows
the tank configuration in dimensionless quantities). The tank is initially rotating about
the central vertical axis at a constant angular velocity Ωs and the fluid is in a state of
solid-body rotation. The rotational speed of the system is then increased smoothly and
finally kept constant at a new speed Ωf = Ωs+∆Ω. The spin-up flow arising during and
after this change is basically horizontal and depth-independent under the asymptotic
restriction ∆Ω � Ωf (Taylor–Proudman theorem). (This still holds even if the whole
system is arbitrarily tilted as long as the container is completely closed without a
free surface.) Thus, some two-dimensional phenomena occurring in the early stage of
the spin-up process, such as separation from lateral walls, can be captured by purely
two-dimensional Navier–Stokes equations, as shown by Suh (1994) and Henderson
et al. (1996). However the numerical results could not satisfactorily predict the later
stage; for instance, Henderson et al. (1996) numerically reproduced the merging event
at Re = 10000 for the aspect ratio 2.2, but the event began to occur at a time 2.5 times
later than the experiment. We postulate that the Ekman pumping from the bottom
wall may play a significant role in the later stage of the process. To account for the
pumping effect in the formulation, we divide the region into two: the upper layer,
which occupies most of the tank and is governed by two-dimensional equations; and
the lower layer, which is very thin; for this, the boundary-layer approximation can be
applicable but the flow field should be three-dimensional.
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2.1. Upper layer; vorticity equation

Taking B, ∆Ω−1, B∆Ω and ρB2Ωf∆Ω as the reference length, time, velocity and
pressure, respectively, we can write the governing equations in dimensionless form as
follows:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− 2

[
1

ε
+ f(t)

]
v = −1

ε

∂p

∂x
+

1

Re
∇2u+ y

df

dt
, (2.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ 2

[
1

ε
+ f(t)

]
u = −1

ε

∂p

∂y
+

1

Re
∇2v − xdf

dt
, (2.2)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.3)

where the coordinates x, y and z are attached to the container as shown in figure 1,
and two-dimensionality is assumed for the horizontal velocity components and the
pressure; u = u(x, y, t), v = v(x, y, t), p = p(x, y, t). For the vertical velocity component
w, a linear profile in the vertical distribution will be assumed, as will be discussed
shortly. The centrifugal and gravitational forces are absorbed in p. The function f(t)
denotes the non-dimensional difference of the instant angular speed of the container
from the final value; in this study f is defined as

f(t) =

{ − 1
2
(1 + cosωt), 0 6 t 6 ts

0, t > ts,
(2.4)

for a smooth speed-up operation in the experiment, where ts = π/ω is the non-
dimensional speed-up time.

Parameters involved in the model are

Re =
B2∆Ω

ν
, ε =

∆Ω

Ωf
, a =

L

B
, h =

H

B
. (2.5)

Here Re is the Reynolds number, ε the Rossby number, a the aspect ratio, and h
the dimensionless liquid depth. For the flow depth-independence, it is required that
Re� 1 and ε� 1; however, as will be shown in § 4, the numerical results with even
moderate values of ε are in good agreement with the experimental results (see also
Zavala Sansón & van Heijst 2000).

To close the problem, the vertical velocity component w appearing in (2.3) must
be specified. As can be seen from (2.3), for the two-dimensional model to be valid, w
must be a linear function of z:

w =
(

1− z

h

)
wE, (2.6)

where wE(x, y, t) is the Ekman pumping velocity induced by the friction at the bottom
wall. In this study, we neglect the free-surface deformation. Then the continuity
equation (2.3) becomes

∂u

∂x
+
∂v

∂y
=
wE

h
. (2.7)

The analysis of the Ekman boundary layer flows supplies wE in relation with the
upper-layer variables as shown in § 2.2.

As usual, we introduce the vorticity

ζ =
∂v

∂x
− ∂u

∂y
, (2.8)
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and eliminate the pressure gradients from (2.1) and (2.2) to obtain the vorticity
equation:

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
= −wE

h

(
2

ε
+ ζ + 2f

)
+

1

Re
∇2ζ − 2

df

dt
. (2.9)

Boundary conditions are simply

u = v = 0 on x = 0, a and y = 0, 1, (2.10)

which guarantees both the impermeable and no-slip conditions.
In summary, the vorticity is determined by (2.9), and velocity components by (2.7)

and (2.8) with ζ and wE being specified.

2.2. Lower layer; Ekman pumping models

To analyse the bottom layer flows, we use two strained variables Z and W defined as

Z = z/
√
E, W = w/

√
E,

where E = ε/Re = (B2Ωf/ν)
−1 is the Ekman number based on the reference length B

(not on the depth H). Note that E here is just used for simplicity of the formulation,
not as an independent parameter, and E � 1 is naturally assumed. Using the classical
boundary-layer approximation, we can write the momentum and continuity equations
as follows:

∂2Q

∂Z2
− 2i(Q− q) = ε

[
∂

∂t
(Q− q) + 2if(Q− q)− 1

Re
∇2(Q− q)

+U
∂Q

∂x
+ V

∂Q

∂y
+W

∂Q

∂Z
− u∂q

∂x
− v ∂q

∂y

]
, (2.11)

∂U

∂x
+
∂V

∂y
+
∂W

∂Z
= 0, (2.12)

where Q = U+iV and q = u+iv are complex velocities defined in the lower and upper
layers, respectively. Note that the horizontal viscous term ∇2(Q − q)/Re is retained
on the right-hand side of (2.11), since it does not add complexity in the analysis.

The boundary conditions are

Q = W = 0 on Z = 0, (Q,W )→ (q, w) as Z →∞. (2.13a, b)

The Ekman pumping velocity in terms of W is given by

WE = −
∫ ∞

0

(
∂U

∂x
+
∂V

∂y

)
dZ. (2.14)

Solving (2.11) and (2.12) for Q and W numerically may require enormous computer
time and is not consistent with our primary purpose. Instead, taking ε as a small
parameter, we use a regular perturbation method to derive a relationship between wE
and the upper-layer variables. Thus, we expand Q and W like

(Q,W ) = (Q0,W0) + ε(Q1,W1) + · · · ,
substitute into (2.11), equate terms of equal power of ε, and then obtain

∂2Q0

∂Z2
− 2iQ0 = −2iq, (2.15)
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∂2Q1

∂Z2
− 2iQ1 =

∂

∂t
(Q0 − q) + 2if(Q0 − q)− 1

Re
∇2(Q0 − q)

+U0

∂Q0

∂x
+ V0

∂Q0

∂y
+W0

∂Q0

∂Z
− u∂q

∂x
− v ∂q

∂y
, (2.16)

etc. The Ekman pumping velocity is given by

wE = wE0 + εwE1 + · · · , (2.17)

and our target is to relate the first two terms with the upper-layer variables.
Solution of the leading-order equation (2.15) is well known:

Q0 = q[1− e−(1+i)Z ]. (2.18)

W0 is obtained from (2.12):

W0 =
ζ

4

[
2− (1 + i)e−(1+i)Z − (1− i)e−(1−i)Z

]
+
wE

4h

[
2− (1− i)e−(1+i)Z − (1 + i)e−(1−i)Z

]− wE

h
Z. (2.19)

The last term in the right-hand side of (2.19) is to be matched with the corresponding
one in (2.6). Taking E → 0 and Z →∞, we obtain from (2.19) the well-known linear
Ekman pumping law:

wE0 =

√
E

2
ζ. (2.20)

Substituting (2.18) and (2.19) into the right-hand side of (2.16) and solving for Q1

gives wE1. After some tedious algebraic work, we end up with

wE1 = −√E
[
−1

4

df

dt
+

1

4
fζ +

7

80
ζ2 +

3

80

(
u
∂ζ

∂x
+ v

∂ζ

∂y

)
+

7

80

(
−u∂ζ

∂y
+ v

∂ζ

∂x

)
+

3

20

(
∂u

∂y

∂v

∂x
− ∂u

∂x

∂v

∂y

)]
. (2.21)

In the above formula ∂ζ/∂t − ∇2ζ/Re has been replaced by −(u∂ζ/∂x + v∂ζ/∂y +
2df/dt) for convenience in the numerical work; this identity comes from (2.9) with
the divergence (∂u/∂x + ∂v/∂y) neglected. The formula (2.21) is in essence identical
with that derived by Hart (1995, 2000).

2.3. Equations for velocities

To solve (2.7) and (2.8) for u and v, we introduce ψ and φ defined as

u =
∂ψ

∂y
+
∂φ

∂x
, v = −∂ψ

∂x
+
∂φ

∂y
. (2.22a, b)

Substitution of these into (2.8) and (2.7) results in

∇2ψ = −ζ, ∇2φ =
wE

h
. (2.23a, b)

In the leading-order Ekman pumping model, wE is proportional to ζ, (2.20), and
this leads to

φ = −
√
E

2h
ψ. (2.24)

Thus, in this case it is sufficient to solve only (2.23a), as done by Zavala Sansòn
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& van Heijst (2000). For the first-order Ekman pumping model, however, a simple
relationship between wE and ζ no longer exists, and the two equations (2.23a, b) must
be solved independently.

Boundary conditions should reflect the impermeable restriction on each wall:

ψ = 0 on x = 0, a and y = 0, 1, (2.25)

∂φ

∂n
= 0 on x = 0, a and y = 0, 1, (2.26)

where n denotes the coordinate normal to each lateral wall. On the other hand no-slip
conditions are applied in solving the vorticity equation (2.9), and will be described in
§ 2.5.

We remark that ψ and φ can be called stream and potential functions respectively,
but only in an asymptotical sense for small E.

2.4. Role of the Ekman effects

In understanding the role of the Ekman effects, the relationship between the pumping
velocity and the vorticity of the upper layer is prerequisite for a clearer picture, and
we employ a linear relation (2.20) for this purpose. In the following analysis, we call
the vortex with ζ > 0 cyclonic and that with ζ < 0 anticyclonic. Thus the cyclonic
and anticyclonic vortices give Ekman pumping (wE > 0) and suction (wE < 0),
respectively. We also assume f = 0.

Then the vorticity equation (2.9) reads

∂ζ

∂t
+ uζ · ∇ζ +

1

2h

√
ε

Re

(
uζ × k) · ∇ζ = − 1

2h

√
ε

Re

(
2

ε
+ ζ

)
ζ +

1

Re
∇2ζ, (2.27)

where ∇ is the gradient operator in the (x, y) coordinates, uζ = ∇ψ× k is the velocity
vector purely driven by the vorticity ζ, and k is a unit vector along the axis of the
container rotation. This equation is actually in the same form as that derived by
Zavala Sansón & van Heijst (2000). In (2.27) the Ekman pumping effect appears
explicitly, namely the third term on the left-hand side (referred to as ‘term I’) and the
first term on the right-hand side (referred to as ‘term II’). The former corresponds
to the advection of the vorticity normal to the streamline, ψ = constant, which is
dictated by the vorticity itself. Since uζ × k is facing toward the right-hand side
viewed from the direction of uζ and the fluid rotates usually in the counterclockwise
(clockwise) direction for the cyclonic (anticyclonic) vortex, term I plays the role of
carrying the vorticity outward for the cyclonic vortex (vorticity spreader), and vice
versa for the anticyclonic vortex (vorticity squeezer). Thus, if the distribution of ζ
within a vortex is such that the level of ζ decreases monotonically from the maximum
value at the centre of the vortex as usual, term I causes the distribution to be flatter
for the cyclone and sharper for the anticyclone.

Term II comes from the conservation of the absolute angular momentum, where
the fluid’s displacement is caused by the pumping or suction from the Ekman layer. If
ε is small enough, term II is approximately linear in ζ, and its role can be considered
as a vorticity decay, with the decay rate being almost the same for both cyclonic and
anticyclonic vortices. However when ε = O(1), the situation is quite different due to
the nonlinearity. For a cyclone the decay rate is larger, whereas for an anticyclone
the decay rate is smaller or can even be negative.

In summary, the action of the Ekman layer causes the cyclonic vortex to decay
fast and makes the vorticity distribution flatter, but it has the opposite effect on the
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Figure 2. Sketch of the vorticity evolution for (a) the cyclonic and (b) anitcyclonic vortices
affected by the Ekman pumping/suction.

anticyclonic vortex. Shown in figure 2 are sketches of the time evolution of vorticity
distributions for the cyclones and anticyclones illustrating the concepts discussed
hitherto.

2.5. Numerical method

The vorticity equation (2.9) is discretized spatially by centred difference with uniform
I × J meshes, and the integration with respect to time is performed by using the
fourth-order Runge–Kutta method. For renewal of ψ and ζ in each step of the
Runge–Kutta method, (2.23a, b) are solved by using the conjugate gradient method
with ILU (incomplete LU-decomposition) preconditioning. Every time (2.23b) is
solved, its spatial average w̄/h is subtracted from the right-hand side; this averaged
quantity should in principle be zero by (2.14) and the impermeable conditions at the
lateral walls, but the accumulation of small errors turns out to cause the computation
to blow up without such an adjustment.

The boundary value of ζ is given by ζw = −(∂2ψ/∂n2)w . For instance at the wall
y = 0, second-order forward difference leads to

ζw ≈ − 1

2∆y2

[
8ψ2 − ψ3 − 6

(
∂ψ

∂y

)
w

∆y

]
, (2.28)

where ψ2 and ψ3 denote ψ(x,∆y, t) and ψ(x, 2∆y, t), respectively. Here, no-slip con-
dition u = 0 applies, and from (2.22a) we can set (∂ψ/∂y)w = −(∂φ/∂x)w .

3. Experimental method
To assist the numerical work, we performed an experiment with an open rectangular

tank mounted on a turntable. The tank was made of Plexiglas with length L = 30 cm,
width B = 15 cm, and height 33 cm yielding the horizontal aspect ratio a = 2, and
filled with tap water. The water depth H was usually fixed at H = 12 cm corresponding
to h = 0.8, but it was varied from 3 to 30 cm when the depth effect was considered
(§ 4.5).

To provide flow visualization, we scattered polystyrene particles on the water
surface. We also added blue dye to the water in order to enhance the contrast
between the fluid and the particles. Roughly 1 g of liquid detergent was further added
to the water to reduce the surface tension effect and to prevent the particles from
becoming lumped together (van de Konijnenberg & van Heijst 1997).
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Figure 3. Experimental apparatus for flow visualizations: 1, rectangular tank with water; 2, rotating
table; 3, servo motor; 4, timing belt; 5, servo-motor controller; 6, PC for servo-motor control;
7, fluorescent lamps; 8, video camera.

The turntable is driven by a variable-speed servo motor through a gearing mechan-
ism (reduction ratio 80 : 1) and a timing belt (figure 3). The servo motor is controlled
by a personal computer with a D/A converter.

Prior to the main experiment, the table was maintained at an angular speed Ωs for
a sufficiently long time so that the fluid remained at a solid-body rotation. Ωs varied
from 0.157 to 0.393 rad s−1. Then at t = 0 the table speed was increased smoothly
(refer to equation (2.4)) to Ωf = Ωs/(1− ε) and remained at this value. In this study
the Rossby number ε was usually fixed at 0.625 except in § 4.4 where its effect is
considered. The time interval Ts for this speed-up operation was set as 3.75 s, which
gives ω = π/(∆ΩTs). Relative motions of the particles were then recorded by a video
camera corotating with the table in the rate 30 frames s−1. The recorded images were
processed by a commercial PIV system (Thinker’s EYES) to obtain velocity fields.
Time interval between two frames used in the PIV processing varied from 1/30 to
5/30 s depending on ∆Ω.

4. Results
In this paper, the aspect ratio is fixed at a = 2, and the parametric study involves

Re, h and ε.

4.1. Verification of Ekman pumping models

The two Ekman pumping models used in the numerical analysis are the linear
pumping law (2.20) (hereinafter referred to as the L-model) and the one corrected
by the addition of εwE1, (2.21) (referred to as the M-model). For the purpose of
comparison, we also run the code without a pumping effect (referred to as the
N-model); in fact this corresponds to h→∞ (cf. (2.7)).

Shown in figure 4 is the evolution of the non-dimensional kinetic energy

E(t) =
1

a

∫ 1

0

∫ a

0

(u2 + v2) dx dy (4.1)

obtained by the experimental and numerical methods at Re = 5890 and 14 730. At
the very beginning of the spin-up we can see an abrupt increase of E. This starting
flow is characterized by a spatially uniform but temporaly varying vorticity

ζ = −2(1 + f), (4.2)
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Figure 4. Time evolution of the kinetic energy given by the numerical and experimental methods
for (a) Re = 5890 and (b) Re = 14 730 at ε = 0.625 and h = 0.8.

which comes from the equation ∂ζ/∂t = −2 df/dt with an initial condition ζ = 0 at
t = 0; refer to Suh & van Heijst (2000) for a mathematically rigorous derivation of
the starting flow equation. The graph reveals that the non-dimensional speed-up time
ts is comparatively small. Except for some critical situations, the effect of ts on the
flow evolution is in most cases negligible.

It is remarkable that the results obtained by both the L- and M-models are very
close to the experimental results. Moreover the two models yield almost identical
results, indicating that the contribution of the higher-order correction, (2.21), to the
Ekman pumping is insignificant. On the other hand, the numerical simulation without
Ekman pumping (N-model) overpredicts the experimental result considerably, and
the discrepancy becomes more pronounced at higher Reynolds numbers. Several
works on the axisymmetric geometry have reported that the linear Ekman pumping
law predicts well the experimental (Wedemeyer 1964; Greenspan 1968; Maas 1993;
Zavala Sansón & van Heijst 2000) and the numerical (Rogers & Lance 1960) results
even for ε = O(1). Thus the present results indicate that the argument is relevant not
only to axisymmetric but also to non-axisymmetric containers.

We also note that at Re = 14 730 even the Ekman pumping models overpredict E(t),
especially in the initial development. However we have found that the discrepancy
becomes smaller as ε decreases. It would be interesting to find out what mechanism is
responsible for such overprediction at high Reynolds numbers for moderate ε values;
we conjecture that inertial oscillation in the upper layer is one of the key factors.

The reason why the higher-order correction in the pumping model brings an
insignificant contribution to the upper-layer flow will now be explained. For this we
express the Ekman pumping velocity wE for t > ts as follows (see (2.17), (2.20) and
(2.21)):

wE =
√
E(K0 +K1), (4.3)

K0 = 1
2
ζ, (4.4a)

K1 = K11 +K12 +K13 +K14, (4.4b)

K11 = − 7
80
εζ2, K12 = − 3

80
ε

(
u
∂ζ

∂x
+ v

∂ζ

∂y

)
, (4.4c, d )
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Figure 5. Distributions of K0, K1, K11 . . . K14 (refer to (4.3) and (4.4) in the text) at y = 1/2 and
at t = 32.7; Re = 5890, ε = 0.625.

K13 = − 7
80
ε

(
−u ∂ζ

∂y
+ v

∂ζ

∂x

)
, K14 = − 3

20
ε

(
∂u

∂y

∂v

∂x
− ∂u

∂x

∂v

∂y

)
. (4.4e, f )

Here K0 and K1 reflect the contributions from the leading- and first-order corrections,
respectively. Figure 5 shows distributions of K0, K11, . . . , K14 along the centreline y =
1/2 obtained by the numerical simulation for the same parameter set as figure 4(a).
It is seen that K0 is indeed dominant. Among the four terms K11, K12, K13 and
K14 contributing to the first-order correction (K1), K11 is the largest. However K1 is
further decreased because K11 is partially cancelled out by the other terms. The ratio
of |K11| and |K0| is

|K11|
|K0| = 7

40
ε|ζ|. (4.5)

Therefore we may estimate that the relative importance of the first-order correction
could be less than this ratio. For a typical value of |ζ| = 1 at ε = 0.625, we have
|K11|/|K0| = 0.11. Even for the case of spin-up from rest (ε = 1), |K11|/|K0| = 0.175.
Thus our analysis renders further support to the assertion given by Maas (1993):
‘. . . the extra Ekman pumping term does not significantly alter the previous results
(even though ε = 0.45). This has to be attributed to the smallness of the numerical
factors preceding the extra terms, . . .’.

Equation (4.5) also implies that the importance of the first-order correction is
roughly proportional to the level of the vorticity. Since the vorticity decays with time,
the relative importance of the first-order correction is further decreased with time.

Shown in figure 6 are the evolution of the velocity vector fields obtained by the
experimental and numerical methods for the same parameter sets as figure 4(a). As
implied in figure 4(a), the numerical results with either the L- or M-model predict
well the experimental result both qualitatively and quantitatively. On the other hand,
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Figure 6 (a, b). For caption see facing page.
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Figure 6. Velocity vectors at the times indicated for Re = 5890, h = 0.8, and ε = 0.625 given by
(a) experiment, and numerical methods with (b) M-, (c) L-, and (d ) N-models.
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the flow fields predicted by the N-model are on the whole stronger than the others,
although the cell structures are in close agreement with the experiment. For this
parameter set, the two cyclonic cells generated at the left-bottom and right-top
corners grow with time until a stable three-cell structure is established; no merging
is observed in this case (hereafter ‘top’ and ‘bottom’ walls denote the walls at y = 0
and 1 respectively and should not be confused with the lower wall at z = 0 or the
free surface of the contained liquid at z = h).

At higher Re (figure 7), merging of the two cyclonic vortices occurs, and some
discernible differences among models appear in the evolution of vortices. In the initial
development up to t = 32.5, three models are in close agreement with the experiment
except that the N-model shows overall stronger flows than the experiment. Both L-
and M-models (figure 7b, c) are successful in reproducing the final three-cell structure
of anticyclone–cyclone–anticyclone (hereafter referred to as pattern ‘−+−’) observed
in the experiment. While the L-model shows the merging occurring at an earlier time
than the experiment, the M-model shows almost a perfect agreement.

On the other hand, with the N-model, the final state is characterized by a +− +
pattern, contrary to the other results and indicating that use of the Ekman models
is essential for correct prediction of vortex interactions. The picture for the N-model
also clearly demonstrates vortical flows rather stronger than the experiment, being
consistent with figure 4(a).

4.2. Typical evolution of vortical flows

We describe typical flow evolution based on distributions of vorticity and streamlines
for h = 0.8 and ε = 0.625. Figure 8 shows the case of Re = 8840 obtained by the
M-model. As with Re = 14 730 (figure 7b), this case also results in cyclone merging.

Initially the anticyclone with uniform vorticity of ζ = −2 occupies most of the
central region (t = 6.6). Although the anticyclone is shrunk with time by the action of
two cyclones, its vorticity level is almost unchanged. The central anticyclonic vortex
on the other hand drives the boundary layers near the bottom and top walls to
supply each detaching shear layer with a high level of positive vorticity. The shear
layers in turn roll up around the corner cyclones to make the cells bigger, like
snowballs. Rapid growing of the cyclones necessitates entrainment of fluid material
of negative vorticity situated in the central anticylone; otherwise, only feeding of the
thin shear layer with thickness of O(Re−1/2) results in a cell size at most O(Re−1/4)
after an O(1) time has elapsed. Typical examples of entrainment of surrounding
fluid during roll-up of shear layers are flow over a wedge in a shock tube (photo
number 82 in Van Dyke 1982), and vortex sheet roll-up in the Trefftz plane (Krasny
1987). Thus the pair of cyclonic vortices shows a peculiar distribution of vorticity
especially near the periphery: positive and negative vorticity resides alternately. At
t = 26.0 the anticyclone takes a dumbbell shape (van Heijst et al. 1990) after which
it splits into two. During this process, the two cyclones merge and occupy the central
region. The split anticyclones move around the merged cyclone, arrive near the left-
and right-hand edges, and become stable cells. The final, almost steady-state is thus
characterized by a −+− pattern.

The essence of the above scenario applies for the range of Reynolds numbers
accompanying the cyclone merging. At higher Reynolds numbers, however, the vor-
tical flows are more active and two-dimensional instability also occurs. Figure 9
shows the case of Re = 14 730. We can see instability in the detaching shear layers
(t = 13.1) and subsequent folding (t = 19.6). It is expected that such instability may
enhance mixing of fluid material in the cyclones which contain different signs of
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vorticity. We also note that the growth rate of the corner cyclones is almost the
same as that at Re = 8840, indicating that the entrainment hypothesis is indeed
plausible. The overall flow evolution is also seen to be more active than the previous
case.

4.3. Effect of Reynolds number

In the above, there has already been some discussion of the effect of Reynolds number
on the flow evolutions. In this subsection further issues will be addressed. Figure 10
shows E(t) for four Reynolds numbers obtained by the M-model. It is seen that
at a given time the kinetic energy is increased as Re increases. We have seen from
figures 4(a) and 4(b) that the Ekman pumping models give rise to a higher decay
rate of the kinetic energy than the N-model, implying that the Ekman pumping
velocity promotes decay of the kinetic energy. Since the Ekman pumping velocity is
proportional to 1/

√
Re (cf. (2.20) or (2.27)), the energy decay should be weaker at

higher Re as shown in figure 10.
To capture the effect of Re on the detailed temporal flow evolution, the vorticity

distributions along the centreline y = 1/2 are plotted as functions of x and t in grey
scale as shown in figure 11. In this plot the extremum of positive vorticity is white
while that of negative vorticity is black. Except near the side boundaries, the white
thus corresponds to the cyclonic vortex and black to the anticyclonic vortex. Every
plot in this figure is symmetric with respect to x = 1 suggesting that the corresponding
flow pattern is antisymmetric.

The initial development (up to approximately t = 25), being independent of Re,
clearly indicates shrinkage of the central anticyclone and expansion of the two
cyclones. However after t = 25 completely different patterns appear depending on Re.
For Re = 5890, the anticyclone is narrowest at around t = 25 and then expands slowly
to become comparable in size to the surrounding cyclones. For the other values of
Re, the initial anticyclone loses its trace at t = 30, which should be a symptom of the
cyclones merging, and only the merged cyclone is seen for a while. Then near x = 0.5
and 1.5 two anticyclones emerge abruptly with the central region still occupied by the
cyclone. Such an abrupt emergence of anticyclones implies that those vortices grew
enough to reach the centreline y = 1/2 (e.g. compare the two vorticity patterns at
t = 39.3 and 45.8 in figure 9).

From this figure we can also find that as Re is increased the shape of the boundaries
between positive and negative vorticity becomes more irregular and complex. The
initial irregular shape shown in the region 0.5 6 x 6 1.5 for Re = 14 730 (figure 11d )
is caused by the instability of the shear layers (cf. the plot for t = 13.1 in figure 9).
The irregularity occurring after t = 46 near x = 0.8 and 1.2 is due to the rotation
of the central, dumbbell-shaped cyclone. Figure 12 shows four sequences of vorticity
distributions related to this outcome. We can see that while the central cyclone rotates
its width measured along the line y = 1/2 does indeed vary considerably. At low Re
(figure 11b) such irregularity is not observed, indicating that neither instability of the
shear layer nor the rotation of the dumbbell-shaped cyclone occur.

4.4. Effect of Rossby number

The Rossby number, ε, is contained in terms I and II in (2.27). As discussed in § 2.4,
the former acts as a vortex spreader (cyclonic) or a vortex squeezer (anticyclonic).
Therefore for the usual vortices (i.e. bell-shaped distribution of vorticity, figure 2),
increase of ε yields stronger vorticity spreading or squeezing. As briefly discussed at
the end of § 2.4 the role of ε in term II is not so simple, but depends on the magnitude
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Figure 7 (a, b). For caption see facing page.
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Figure 7. Same as figure 6 but for Re = 14 730.



120 Y. K. Suh and Y. H. Choi

(a) (b)

t = 6.6

13.1

19.6

26.2

32.7

45.8

52.4

39.3

Figure 8. Contours of (a) vorticity and (b) streamlines at the times indicated for Re = 8840,
h = 0.8, and ε = 0.625 given by the numerical method with the M-model. Solid/dashed lines
indicate positive/negative values. Intervals for the contour levels are 0.5 for the vorticity and 0.01
for the stream function.
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Figure 9. Same as figure 8 but for Re = 14 730.
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Figure 10. Time evolution of the kinetic energy given by the numerical methods with the
M-model for ε = 0.625 and h = 0.8 and various Reynolds numbers as indicated.

of ε and the value as well as the sign of ζ. When |ζ| is small enough, which is typical
in the later stage of the spin-up process, increase of ε results in a smaller decay rate
of ζ regardless of the rotational direction of the vortex. When ζ is of O(1), which is
typical in the early stage of the spin-up process, the effect of ε can be stated in two
ways depending on the level of ε. If ε is small enough, increase of ε gives a smaller
decay rate of ζ, and this holds for both cyclonic and anticyclonic vortices as before.
If ε is of O(1), the decay rate for the cyclone is higher than that for the anticyclone;
as an extreme case when ζ = −2/ε, i.e. starting flow vorticity in the spin-up from rest,
the decay rate becomes zero. In summary, except both for the case of ε = O(1) and
for the starting flow, increase of ε is expected to give rise to a smaller decay rate of
ζ. The numerical results given by the M-model, figure 13, supports our assertion.

Figures 14 and 15 compare the evolution of velocity vectors for ε = 0.32 and 0.8.
At ε = 0.32 (figure 14) cyclone merging does not occur (experiment) or occurs very
slowly (numerics), whereas at ε = 0.8 (figure 15) merging takes place in a regular
manner as in figure 7. Thus we infer that smaller ε makes the overall flow decay
faster resulting in slower or no cyclone merging.

4.5. Effect of liquid depth

The effect of h on the spin-up flow evolution can be understood more simply than
that of ε. The vorticity equation (2.27) shows that terms I and II contain h in the
denominator only. Thus increase of h evidently leads to a weaker Ekman-pumping
effect. The equation also reveals that h exerts the same influence as

√
Re on the flow

evolution as far as the inviscid motion is concerned.
Although an increase of h is simply connected to the decrease of the Ekman

pumping velocity, its influence on the spin-up flows is not monotonical. Figure 16
shows the evolution of vorticity contours for four different h values at Re = 11 780
and ε = 0.625 obtained numerically. At h = 0.2 (figure 16a), the flow decays fast
due to a strong damping action of the Ekman layer, and no merging of the cyclones
takes place. A similar result was obtained for h = 0.4. At h = 0.6, 0.8, 1.0 and 1.2, we
obtained merging of cyclones, and figure 16(b) shows a typical case.
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Figure 11. Time evolution of the vorticity distributions along the centreline y = 1/2 given by
the numerical method with the M-model for h = 0.8, ε = 0.625 and for (a) Re = 5890, (b) 8840,
(c) 11 780, and (d ) 14 730.

At h = 1.4 (figure 16c) however the evolution is more complex. The behaviour of
cyclones shown in the first three frames is very similar to the corresponding ones
in the merging regime, i.e. figure 16(b). After t = 54 however two cyclones do not
merge but move apart from each other, t = 72. The reason for such splitting may
be explained in terms of the vortex spreader/squeezer mechanism discussed in § 2.4.
At higher h, the Ekman pumping effect is weaker and thus the cyclonic/anticyclonic
vortex tends to expand/shrink less than at lower h. Indeed, two anticyclones situated
near the right-bottom and left-top corners at t = 54 for h = 1.4 (figure 16c) are
larger than the corresponding ones for h = 0.6 (figure 16b), and vice versa for two
cyclones. A pair of equal-signed vortices without question tends to merge when it is
enlarged, as is the case for the anticyclones at h = 1.4. The flow patterns for h = 1.2
(not shown) and h = 1.4 (figure 16c) are very similar to each other up to t = 54,
but then diverge, arriving at a − + − pattern for h = 1.2 and + − + pattern for
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Figure 12. Evolution of the vorticity contours given by the numerical method with the M-model
for the same parameter set as figure 11(d ) illustrating the revolving motion of the central dumb-
bell-shaped cyclonic vortex.

h = 1.4. Therefore a small perturbation may cause the cyclones to merge or split near
h = 1.2–1.4; that is, we expect a critical phenomenon associated with the cyclone
merging in this parameter range.

When h is slightly increased, h = 1.6 (figure 16d ), the final flow pattern again differs
from that of h = 1.4. Here too the central pair of cyclones shown as a dumbbell shape
is split. However in this case each cyclone is again split into two, and the central pair is
strengthened by merging with the small cyclone at the top/bottom walls induced by the
anticyclones (t = 72). These cyclones merge in the central region and the final pattern
is characterized by a −+− structure (t = 90). We thus expect another critical situation
between h = 1.4 and 1.6. Since the evolution patterns for h = 1.8, 2.0 and ∞ are
similar to that for h = 1.4, the critical situation may also exist between h = 1.6 and 1.8.
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Figure 13. Time evolution of the kinetic energy given by the numerical methods with the
M-model for Re = 11780, h = 0.8 and the three Rossby numbers shown.

4.6. Flow regimes at ε = 0.625 in the parameter space (Re, h); merging event

Up to now we have presented numerical and experimental results and discussed
effects of Reynolds number, Rossby number, and liquid depth, in association with the
Ekman pumping, on the overall flow evolutions in the spin-up process. In particular
for Re = 11 780 the depth effect was shown to be unusual as h is increased the
cyclone:behaviour follows the sequence ‘simple non-merging’ → ‘simple merging’ →
‘approaching but non-merging’ → ‘merging after a long time’ → ‘approaching but
non-merging’. Assuming that the critical depth for such changes in behaviour should
be dependent on Reynolds numbers, we fixed the Rossby number at ε = 0.625 and
changed Re and h with constant intervals to construct a parameter space (Re, h) on
which to classify flow regimes associated with the cyclone merging.

Table 1 shows the results obtained both experimentally and numerically. In this
table, symbol × indicates a simple non-merging (e.g. figures 6, 16a) and e a simple
merging (e.g. figures 7a, 8, 9, 12, 16b). The symbol 4 also indicates a cyclone non-
merging event, but in this regime the cyclones initially come close and then split
(figure 16c). In the flow regime denoted as � the initial development is similar to
that of the non-merging event 4 and the cyclones first approach and then split from
each other (t = 30, 40, 50 in figure 17). The pattern + − + created in this way is
maintained for a while until two cyclones approach again (t = 90) and merge in
the central region (t = 100). Figure 16(d ) is also categorized as the regime �, but
compared with figure 17 the initial approach of the cyclones is rather slow and the
cyclone merging takes place early.

Overall the numerical computation predicts well the experimentally observed flow
regimes. The cases in which the numerical results differ from the flow visualizations
are indicated as bold symbols. The critical depths for switching from regime × to e
at low h (hereafter denoted as hc1) obtained by the numerics are slightly lower than
those given by the experiment, in particular for Re = 7360. It shows that hc1 decreases
with Re. The second critical depth hc2 (switching from e to 4) predicted in the
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Figure 14. Velocity vectors at the times indicated for Re = 11 780, h = 0.8, and ε = 0.32 given by
(a) experimental and (b) numerical methods with the M-model.
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Figure 15. Same as figure 14 but for ε = 0.8.
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Figure 16 (a, b). For caption see facing page.

numerics is also slightly lower than in the experiment except for Re = 14 730; hc2 also
decreases with Re. For the third critical depth hc3 (switching from 4 to �) however
the numerical prediction shows a considerable discrepancy from the experiment, and
further, the discrepancy is not consistent. For instance, at Re = 13 250 the numerical
value hc3 = 1.4–1.5 underpredicts the experimental value hc3 = 1.8–2.0, whereas at
Re = 14 730 the numerical result hc3 = 1.6–1.8 overpredicts the experimental value
hc3 = 1.2–1.4.

The regime � occurs at high h and Re, and in this parameter range the Ekman
pumping is weaker resulting in a lower damping and thus more active and long-lived
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Figure 16. Time evolution of vorticity contours given by the numerical method with the M-model
for Re = 11 780, ε = 0.625, and (a) h = 0.2, (b) 0.6, (c) 1.4, and (d ) 1.6. Solid/dashed lines indicate
positive/negative values. Interval for the contour levels is 0.5.

vortical flows. Therefore accumulation of errors caused by approximation for the
Ekman pumping model should inevitably produce a discrepancy.

5. Summary and conclusions
We have been successful in fairly long-time prediction of the spin-up flows in

a rectangular container by using a two-dimensional code with Ekman pumping
models, and our numerical results compare well with the corresponding experimental
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Re = 5890 7360 8840 10 310 11 780 13 250 14 730

E M E M E M E M E M E M E M

h = ∞ 4 � 4 4 4 4 4
2.0 × • e e e e 4 4 4 4 � � � N
1.8 × • e e e e e N 4 4 4 4 � �
1.6 × × e e e e e e 4 � 4 � � N
1.4 × × × • e e e e e e 4 4 � N
1.2 × × × • e e e e e e 4 4 4 4
1.0 × × × • e e e e e e e e 4 •
0.8 × × × × e e e e e e e e e e
0.6 × × × × × × × • e e e e e e
0.4 × × × × × × × × × × × • × •
0.2 × × × × × × × × × × × × × ×

Table 1. Regimes of cyclone merging in the parameter space (Re, h) obtained by experimental
visualization (E) and the numerical method with the M-model (M) at ε = 0.625. Here, × indicates
non-merging, e simple merging, 4 initial approaching but non-merging, � initial approach-
ing-splitting-merging. The shaded symbols indicate that the numerical results have a discrepancy
with the experimental ones.

results. When the Ekman pumping effect is not considered (N-model), however, the
numerical computation fails to provide reliable data, especially for a shallow liquid
layer. Since the N-model corresponds to an infinite liquid depth and as h is increased
the flow evolution undergoes several critical situations, in particular at high Reynolds
numbers, it is evident that neglecting the Ekman pumping effect in a two-dimensional
computation (e.g. Suh 1994 and Henderson et al. 1996) can lead to completely different
flow patterns in the later stage of the spin-up process.

In the numerics we used both L- and M-models for the Ekman pumping effect.
In most cases (ε < 0.8), we have found that the two results are very close to each
other, indicating that inclusion of higher-order terms in the Ekman pumping model
is not important. The reason for this was found to be due to the smallness of the
coefficients in the correction terms, and our analysis for the non-axisymmetric case
is in line with that given by Maas (1993) for the axisymmetric shape. It would be
interesting to do a study on the spin-down case, in which high Rossby numbers can
be readily established, to see if the higher-order terms in the Ekman pumping model
can improve the solutions to any extent.

We have shown that the Ekman pumping plays an important role in predicting
the overall evolution of vortical flows, in particular the cyclone merging event. Two
main effects caused by the Ekman pumping have been found to be damping (term
II in (2.27)) and advection (term I in (2.27)). When either h or Re is small enough
the Ekman pumping is significant, and the spin-up flow, due to term II, decays fast
leading to non-merging. When h and Re are adjusted such that the pumping velocity
is of moderate level, the Ekman pumping causes the cyclonic/anticyclonic vortices to
expand/squeeze so that cyclone simple merging occurs. If h and Re are high enough
so that the Ekman pumping velocity is at low level, there is no distinction between
the cyclones and anticyclones, and the flow pattern tends to be more complex and
asymmetric. In this regime, the vortex evolution is sensitive to a small perturbation,
and a small change of h can lead to a completely different flow pattern in the final
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Figure 17. Time evolution of vorticity contours given by the numerical method with the M-model
for Re = 13 250, ε = 0.625, and h = 1.6. Solid/dashed lines indicate positive/negative values.
Interval for the contour levels is 0.5.

stage of the spin-up process (see figures 16c and 16d ). Therefore predictions of the
Ekman pumping models should be worse as h and/or Re is increased.

In this paper we revealed for the first time that a two-dimensional computation
of the spin-up flow in a rectangular container can predict well the experimentally
observed vortical flows with the use of Ekman pumping models at moderate values of
h and Re. Further study is needed to enlarge the parametric space for good prediction.
To improve the model, we must consider the region close to the sidewalls. In this
region the vorticity is at high level and thus the induced pumping velocity is large
(cf. (2.20)). However this vertical momentum cannot penetrate far into the upper
layer because of the sidewall friction effect. The models proposed in this paper are
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therefore liable to overpredict the Ekman pumping effects near the sidewalls. The
free shear layers having high gradient of vorticity, observable e.g. in the periphery
of the cyclonic vortices, also deserve our attention. It is expected that this region is
susceptible to centrifugal and barotropic instability (Orlandi & Carnevale 1999) and
subsequent inertial oscillations. When such three-dimensional effects are important,
horizontal transport of vorticity may be enhanced. Turbulence unavoidably occurring
at least in the Ekman boundary layers at higher Reynolds numbers may also cause
the Ekman pumping velocity to be significantly larger. Considering these factors in
developing new models for the Ekman pumping effect may be important in prediction
of large-scale flows, such as oceanic flows.
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